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Abstract 
 
This paper reviews the literature on trends of technological improvement, focusing on the 
energy sector. We discuss the extent to which past trends can be used to predict the future 
improvement paths of technologies. The historical trends for certain technologies, such as 
wind and photovoltaics, have been much more regular than those of other technologies, 
such as nuclear fission or natural gas. Reasons for this include different degrees of 
dependency on scarce resources (which is high in the case of natural gas), as well as 
technology improvement drivers other than cost (such as a push to increase safety in the 
case of nuclear fission). Data from the United States show that retail electricity prices 
have fluctuated over the last forty years, but with no clear increasing or decreasing trend. 
In contrast the cost of several renewable technologies has dropped considerably; for 
instance, the cost of photovoltaics has dropped by more than two orders of magnitude 
during that same period.  A blind extrapolation of historical trends suggests that the cost 
to achieve parity is not prohibitive, though we stress that there are large uncertainties 
involved.  In an effort to better understand the reasons for these trends, we review 
theories for the functional form of technological improvement curves and discuss how 
this problem can be understood in terms of portfolio theory. 
 
I.  Introduction 
 
In order to achieve a global transition to a low-carbon energy infrastructure we will have 
to make a series of investment choices in both the public and private sectors.  Making the 
right choices depends on our beliefs about the future of each possible technology.  As we 
invest in a technology, we expect its costs to drop, but by how much?  Which 
technologies are most likely to satisfy, at the lowest cost, requirements for low carbon 
emissions and other environmental criteria?   
 
Currently this debate often occurs in the following way: Experts are queried and present 
technical arguments for a technology based on their own judgment, sometimes taking 
into account engineering extrapolations for components of a technology.  Since experts 
usually differ in their opinions, sometimes dramatically, this places decision makers in 
the difficult position of having to make their own subjective judgments about who is right 
and who is wrong.  This problem is exacerbated because each expert is most often a 
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specialist in only one technology or a related family of technologies, and there is a 
tendency to champion these technologies.  This hampers objective decision making. 
 
An alternative approach uses the past performance trends of technologies to extrapolate 
into the future. Based on existing data it seems clear that predictions made in this way are 
better than random. However, it is still unclear how much better, making it difficult to 
know how much to rely on them and limiting their usefulness in constructing public and 
private investment portfolios. Nonetheless, the predictions made using this method are 
good enough that an awareness of the large literature on this subject should be an 
important part of any decision making process for technological investment. 
 
This approach can be substantially improved by developing a more scientific 
understanding of the factors that drive technological improvement, and using 
extrapolations based on past and present performance data to systematically predict 
future performance. There is considerable evidence that there are patterns to 
technological improvement. By developing an understanding of the underlying reasons 
for these patterns in past data it should be possible to predict future technological 
performance in reliable ways, even if in some cases this simply means more accurately 
predicting the uncertainty of extrapolations.  
 
In this article we present a brief review of the literature on technology performance 
curves and offer our opinions about what research needs to be done to have a better 
understanding of the patterns of technological improvement. We also comment on how 
this understanding can be used to make better forecasts of future technological 
performance.  We also discuss how insight into this problem can be gained by casting it 
in terms portfolio theory. 
 
This paper is organized as follows:  In Section II we review the literature on technology 
performance curves in general and in Section III we do this specifically for the energy 
sector.  In Section IV we discuss how performance curves can be used to make 
investment extrapolations, and how they can be sensitive to small changes in model 
parameters.  In Section V we discuss the factors that influence technology performance 
and in Section VI we give a qualitative discussion of the differences between renewable 
vs. non-renewable sources of energy.  In Section VII we discuss theories that attempt to 
explain the functional form of technology improvement curves and in Section VIII we 
cast the problem of technological evolution in terms of portfolio theory.  Section IX 
presents our conclusions. 
 
II. Background on performance curves 
 
One of the most striking facts about technologies is that they tend to improve with time 
and experience.  The first systematic observation of this was published by T.P. Wright in 
1936 [1]. He gathered and analyzed data on the costs of airplane manufacturing in the 
United States, and showed that they systematically dropped as a function of the 
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cumulative number of units produced. He proposed that the cost per unit c as a function 
of the cumulative number of units produced n was reasonably well described by a power 
law of the form: 
  
                                                                  c = kn−α                                                             
(1)   

       
where α  and k are constants.  k determines the scale of the changes and α  determines the 
rate at which improvements occur.  It is common to re-express α  as a progress ratio R, 
which is defined as R = 2α .  The progress ratio is the fraction by which the cost drops 
under a doubling of cumulative output.  A progress ratio of 80%, for example, implies 
that if over a given period the cumulative production n doubles, the costs c are 80% of 
their value at the beginning of the period, i.e. they drop by 20%.  
 
An example is given in Figure 1 for the price of the Ford Model T from 1909 – 1923 
from Abernathy and Wayne [2].  The data is fit to a power law of the form of equation 
(1).  To make this relationship clear the data are plotted on double logarithmic scale.  
Taking the logarithms of both sides of equation (1) gives logc = −α log n + log k , i.e. the 
logarithm of the cost is linear in the logarithm of the cumulative production, so that in 
double logarithmic scale a power law becomes a straight line.  We see that for the Ford 
Model T there is a fairly good fit to a power law. 
 
 

 
 

Figure 1. The price of the Ford Model T from 1909-1923[2]. 
 
Since Wright’s investigation of airplanes there have been many other studies of 
technological improvement [1, 3-14]. Various metrics have been used for measuring both 
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technological improvement and cumulative production.  The most common measure of 
technological improvement is the cost of producing a single unit, though in some cases 
“cost” is taken to include only labor and not capital costs.  In addition to becoming 
cheaper to manufacture, technologies get better in a variety of other ways, which 
complicates the question of what one should take as a measure of cumulative production.  
For example, if one just counts airplanes, is a small biplane equivalent to a large 
commercial jet liner?  In such an example the right metric of production is not clear. 
 
Studies of technological improvement have taken place on many levels, including 
individuals, firms, and entire industries.  At the individual level, for example, the average 
time it takes for a lathe operator to produce a given product has been shown to decrease 
with experience.  Many of the early studies were at the level of individual firms or even 
individual plants, for example, tracking the labor output required to produce a product as 
a function of cumulative output for that particular plant.  Plots of performance vs. 
cumulative production are known by various names, such as learning curves, progress 
functions and experience curves.  A learning curve or progress function typically refers to 
the relationship between technical change and learning from production experience at the 
firm level. The experience curve concept, in contrast, was developed to include all costs 
to manufacture and market a product at the industry level [5-7]. In this paper we 
introduce the more general term performance curve to include all of the above, as well as 
other performance metrics that may not involve cost. 
 
Studies of performance curves at different levels show that technological costs as a 
function of time do not always follow power law relationships.  For example, if we look 
at the costs to manufacture Fords other than the Model T, the story is quite different, as 
shown in Figure 2. This figure shows that there was a dramatic drop in cost immediately 
before Ford began producing the Model T, due to a change in corporate strategy to focus 
on producing cheaper cars.  While there was a fairly steady drop in costs that followed a 
power law during the Model T era, this ended shortly after the demise of the Model T.  
Ford changed their strategy back to producing larger, more expensive cars, and 
manufacturing costs went up for almost the next four decades.  This shows the danger of 
blindly extrapolating a performance curve.  This is confirmed by other studies in the 
literature.  While there are many examples of steady improvement along power laws, it is 
by no means a universal rule.  As the Ford example illustrates, it may be valid in some 
regimes and not in others, and indeed when there is a major regime change one may 
expect discontinuous behavior.  One obvious factor that can be extremely important is the 
objective function that the producers of a technology optimize:  During the Model T era 
Ford concentrated on making the cheapest possible automobile.  When market tastes 
changed circa 1925, Ford changed their focus to comfort and performance and allowed 
costs to rise.  Thus the subsequent increase in cost probably does not reflect a decrease in 
manufacturing efficiency, but rather a change in the product itself.    
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Figure 2.  A study of the cost for producing Ford automobiles over a longer period 
shows that the power law improvement observed during the Model T period 
ceased to be valid in other periods due to a change in consumer tastes and 
corporate strategy [2], i.e. a change in the optimization function. 

 
One should naturally ask why performance is taken to be a function of cumulative 
production rather than some other variable. It is generally assumed that cumulative output 
is not the direct cause of improvement, but rather is simply an easily measurable quantity 
that is correlated to other variables such as accumulated knowledge.   It would be nice to 
have a more direct way of measuring know-how, but cumulative performance has the 
advantage of being straightforward to measure compared with most other factors.  Trends 
in time are generally less consistent, with the notable exception of Moore’s Law. 
 
Even if a power law relationship is assumed to hold, the corresponding progress ratios 
can be highly variable.  Figure 3 shows the results of a study done by Dutton and Thomas 
that tabulated progress ratios from 108 different cases.  While the center of mass is near 
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80%, the approximate value originally observed by Wright, the progress ratios vary from 
55% to 108%.  Unfortunately, in the absence of a clear null hypothesis for the statistical 
process of technological improvement and more careful data analysis it is impossible to 
tell whether these variations are real or simply artifacts of statistical fluctuations due to 
short samples. However, the Ford example suggests that such variations should not be at 
all surprising.  Even if we assume that learning always drives progress along a power law 
(which seems unlikely), when cost is not the sole optimization criterion, or when there 
are factors other than learning influencing costs, we should not expect to see a power law 
improvement when we look at cost alone. 

 
 

 
 
Figure 3. Progress ratios 108 cases, 22 field studies, electronics, machine tools, 
system components for electronic data processing, papermaking, aircraft, steel, 
apparel, and automobiles [7]. 
 

While performance curves are often thought to reflect only incremental improvements, 
depending on the level of aggregation of the technologies studied, they may also capture 
more radical, new discoveries. For example a performance curve for integrated circuits 
may include radical changes to thin-film deposition techniques, and a performance curve 
for electronic display screens may include fundamental advances in transparent 
conducting materials. The degree to which radical changes decrease the reliability of 
future predictions based on past performance will depend on the level of aggregation and 
many other factors. The case of integrated circuits (measured in terms of the number of 
transistors per integrated circuit) provides an excellent example of how progress in a 
given technology can follow a relatively smooth trajectory even in the midst of many 
radical innovations. 
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Despite the fact that there are hundreds of papers studying performance of technologies, 
based on the current literature it is difficult to form a clear and quantitative picture of 
their usefulness as a forecasting tool [4, 7, 9, 15].  No single study has systematically 
collected the data from all these studies and performed the careful statistical analysis that 
would be required to quantitatively measure their usefulness as a forecasting tool; for the 
best examples see [9, 15, 16]. Nonetheless, there are a few qualitative conclusions that 
can be drawn:  (1) Technological costs tend to drop with time, and often do so following 
a power law relationship.  (2) The improvement is most clear when costs are the main 
factor that is being optimized, and when the driving force is innovation rather than other 
factors1.  (3) While the quality of forecasts is uncertain, it is clear that there is at least 
some forecasting power to extrapolating technological trends – the forecasts are much 
better than random.  We will say more about this in the next section.  
 
III. Performance curves in the energy sector 
 
What can performance curves tell us about formulating rational policies and making good 
investments in energy technologies?  At the very least, they can give us an idea of 
historical trends.  For example, in Figure 4 we show the price of a watt of installed 
capacity as a function of cumulative capacity for five different energy technologies, 
namely photovoltaics, solar thermal, wind, U.S. nuclear power, and NOx controls.  As 
indicated in the figure, the data span somewhat different periods for each technology, 
which should be borne in mind in considering the results (e.g. the solar thermal data ends 
in 1991 and so does not reflect more recent improvements).  For energy technologies we 
have the advantage that, under the assumption that a watt of power is equally useful at 
any point in time, we can measure cumulative capacity in a consistent way (i.e. we don’t 
have the problem encountered with airplanes of having to compare airplanes of different 
speeds, reliability, etc.).   
 
A problem occurs when we try to compare technologies such as photovoltaics or wind, 
where the costs are almost entirely the capital costs of the initial installation, to 
technologies such as coal or natural gas fired power plants, where there are significant 
ongoing fuel costs.  All the technologies shown in Figure 4 are dominated by capital 
costs, and so it is fairly reasonable to focus on the capital costs per unit of peak power 
production capacity.  Of course, in reality the amount of energy a working photovoltaic 
installation will generate over time depends on many other factors, such as the average 
amount of sunlight for the location in which it is installed.  A similar consideration 
applies to a fossil fuel plant:  The cost of the plant itself does not include the cost of the 
fossil fuel, which will vary over time as the price of the fuel fluctuates, and may be a 
significant component of the total cost of the power.  One must also address the fact that 
                                                 
1 This is at least the traditional thinking, but not all evidence supports it.  For example, photovoltaics are a 
good example of a technology that has followed a clear power law improvement curve.  Nonetheless, 
Nemet [11] has concluded that the main drivers of improvement were economies of scale, efficiency 
improvements, and material costs.  See our remarks in Section VII, where we suggest that economies of 
scale can also  obey Wright’s Law. 
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the need for electricity varies depending on time of day and weather conditions, i.e. 
power generated on a sunny day when air conditioning demand is at its peak may be 
more valuable than power generated at night, and as the mixture of different generating 
sources changes, the demand for power conditioned on other factors, such as weather, 
may change.  To make a proper comparison one must estimate all costs of actually  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Cost vs. cumulative capacity for electricity generation 
technologies.   Cost is measured in terms of price per watt of peak 
generating capacity, and cumulative capacity is measured in terms of 
megawatts of installed capacity.  Data is given for wind, PV = 
photovoltaic, solar thermal, and nuclear power. NOx refers to the 
additional cost of installing pollution controls that reduce nitrogen oxide to 
a targeted regulatory level. This data is from selective catalytic reduction 
(SCR) units installed on natural gas-fired power plants. See [17]. The NOx 
and nuclear power data are from the US, and the other data sets are global. 
Several of the data sets are fairly well described by a power law, and the 
progress ratio (R) is shown for these.  
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generating the power, including maintenance, lifetime, transmission, and ability to deliver 
during times of peak demand.  This can obviously get too complicated to capture with a 
single average measure.  Comparisons between different technologies are typically 
reduced to a cost per kilowatt-hour of the energy actually generated, but one should keep 
the complexities discussed above in mind.  In any case when making an extrapolation it 
can be useful to decompose the total costs into their components. This is discussed 
further in section VI. 
 
Figure 4 indicates that four of the five technologies have tended to improve with time 
throughout the period of the study. Photovoltaics and wind power improved fairly 
steadily.  Both yield reasonable fits to a power law, though from the plot one can see that 
there is some fluctuation in slope.  For solar thermal we have very little data so it is not 
surprising that the trend is not obvious.  The cost of NOx controls, in contrast, has a noisy 
trajectory, and although there was a tendency for improvement it is difficult to say what 
kind of model might be appropriate.  
 
A striking counter example is U.S. nuclear power, which increased in price by almost an 
order of magnitude over the course of roughly two decades.  Although we cannot state 
this with certainty, we believe this is primarily due to the increased focus on power plant 
safety during this period, which was significantly driven by tighter regulatory control2.   
 
As in the case of Ford, when cost ceases to be the dominant objective function and 
optimization occurs in other dimensions, there is no reason to expect that prices will 
decrease according to a power law, or even to expect that they will improve at all.  This 
message is of course very relevant for the energy sector as we move forward.  When we 
impose penalties for carbon emissions, thereby changing the objective function, we 
should expect that fossil fuel technologies are likely to increase in price, whereas 
technologies that do not produce much carbon anyway will be relatively unaffected. 
 
We have not included fossil fuels in Figure 4 because we are still compiling the data to 
reduce the analysis to a similar form, and because there are problems in measuring 
cumulative production in a way that allows a reasonable comparison.  We will return 
later to discuss fossil fuels in more detail. 
 
IV. When do alternative technologies become competitive? 
 
If we believe that there is a reliable trend of technological improvement, then it is 
possible to use this trend to extrapolate the level of investment that would be required to 
reach break-even at a given price level.  This of course assumes that we know in advance 

                                                 
2 One piece of evidence for this is the suggestion that trends in European nuclear power plants are quite 
different, and do not show the same increase in cost. However reliable cost data for Europe is difficult to 
obtain.  
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what a competitive price level is likely to be – the dominant technologies that set the 
price level are likely to themselves be evolving. 
 
In fact, trends in retail electricity rates in the U.S. suggest that the evolution of the prices 
set by the dominant technologies has been fairly slow in recent years.  In Figure 5 we 
show a comparison of the costs of electricity generation by photovoltaics to U.S. retail 
electricity rates during the same period. 
 

 
 

Figure 5.  Aggregate cost of electricity in the US, versus cost of PV electricity 
[11]. 

 
We see that retail rates have fluctuated (bear in mind the logarithmic scale), the overall 
trend has remained relatively constant at about 10 cents per kilowatt-hour, while in the 
same period while the cost of photovoltaic electricity has dropped by more than two 
orders of magnitude.  This suggests that if we simply keep building more photovoltaics 
we should shortly reach the cross-over point at which photovoltaic prices become 
competitive with existing dominant power generation methods.  Assuming for the 
moment that this assumption is true, at what point would that occur? 
 
In Table 1 we present a comparison of the cumulative production levels that would need 
to be reached and the corresponding cost of reaching this level, assuming a target of 1 
$/W. The cost to reach the cross-over point is found by extrapolating the curve to the 
target and taking the integral up to that point.  The answer is very sensitive to the 
progress ratio.  In-sample the progress ratio has tended to be roughly 80%, but since the 
out of sample value is uncertain, we have included a range of plausible values from 70 – 
90%. 
 
 

 



 

The London Accord    11

Progress ratio  70% 75% 80% 85% 90% 

Breakeven cumulative production (GW) 23 48 148 957 39700

Cost of reaching 1.0 $/W ($ billion) 37 74 211 1240 46800

 
Table 1. The cumulative production of electricity (in gigawatts of peak capacity) 
needed to break even with a residential cost of 10 cents per kilowatt hour, and the 
cumulative cost of achieving this level of production, assuming a simple trend 
extrapolation.  These are given as a function of the progress ratio that is assumed 
to hold during the out of sample period.  Costs are given in dollars as of the year 
2000 [12]. 

 
As is apparent from the table, the results are highly sensitive to the progress ratio.  In the 
most optimistic case where we assume a progress ratio of 70% the investment required is 
only 37 billion dollars, whereas for a 90% progress ratio it is 46.8 trillion dollars.  In the 
case that the present rate of 80% continues it is about 200 billion.  While this is a large 
number, it is a small fraction of the yearly tax revenue of the United States.  Note that this 
is not really “investment” in the usual sense – we are simply assuming that installations 
are made to increase the capacity, and that the pattern of improvement follows a power 
law with the given progress ratio.  That is, we assume that if the rate of installations per 
unit time were to increase, e.g. due to a crash program to install photovoltaics, all the 
factors that cause improvements would have the same correlations with cumulative 
capacity that they would otherwise, so that Wright’s Law continues to hold.  To consider 
an analogous situation, production of airplanes and other war machinery under crash 
programs during World War II form some of the best examples of Wright’s Law [18], are 
were roughly in line with earlier trends for cumulative production, suggesting that such 
an assumption is not unreasonable.  
   
To illustrate the sensitivity of historical trends, in Figure 6 we show two different global 
surveys of PV prices. Fitting a power law to these two data sets separately results in a 
progress ratio of between 0.74 and 0.83 and an investment (area under the curve) that 
varies by more than an order of magnitude. The data shown in Figure 4 takes an average 
of these data sets. This highlights the importance of obtaining data sets that are as 
comprehensive as possible. Relying on time series data that do not extend over a long 
enough time period can also cause problems. 
 
Another challenge is that data is most commonly obtainable in terms of price rather than 
costs. This adds extra difficulty in interpreting trends since profit margins may change 
[5]. This is likely to be less of a problem for long data sets in competitive markets, where 
we can average profit margins over time and where we expect the margins to remain 
fairly constant. For cases where these conditions do not hold, it is important to consider 
this additional source of uncertainty in projections.  
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Figure 6.  Illustration of two different historical data sets for PV performance 
curves, with progress ratios that vary from 0.74 (Maycock) to 0.83 (Strategies 
Unlimited). [11] 

 
The extrapolation exercise discussed above illustrates several important points.  First, it 
shows that the cost of transitioning to a new technology depends critically on the rate at 
which that technology improves.  Some technologies have shown fairly steady trends of 
improvement in the past, and a multitude of historical examples suggest that it is likely 
that they will continue these trends in the future.  Of course, we can never be sure of this, 
which illustrates the need to maintain a portfolio of diversified investments, as discussed 
in Section VIII.  It also motivates obtaining a better understanding of the factors that 
drive technological improvement, a subject that we feel has received inadequate 
attention. 
 
Performance curve projections can have significant effects on, for example, cost 
optimization models that attempt to determine the minimum cost to stabilize CO2 
concentrations in the atmosphere at a given level. These cost estimates are in turn used to 
determine acceptable levels for carbon regulations such as caps on emissions. This 
highlights the importance of making reliable forecasts. In the next section we outline 
steps one can take in curve extrapolation and decomposition of technologies to increase 
the reliability of forecasts. 
 
V.  What factors does technology performance depend on? 
 
The reasons that technologies improve have been the subject of considerable debate [7, 
19]. One approach to addressing this question is to understand the effect of individual 
sources of improvement on the technology as a whole.  This can be done by decomposing 
technologies into the processes that drive improvement, which we call process 
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decomposition, or by decomposing them into their physical components, which we call 
input decomposition.   
 
Process decomposition separates the means by which technologies improve or become 
more economical into components that are often described as economies of scale, 
learning by doing and learning by using. Economies of scale occur when a process has 
fixed, scale independent costs that become smaller in relative terms as scale increases.  
Learning by doing commonly refers to improvements that occur as people perform a 
procedure over and over again [20], and learning by using refers to improvements 
generated by feedback from users or as a result of users changing the way they operate a 
device [21, 22]. And of course, although much harder to characterize, there are the bursts 
of creativity and originality that give rise to new technologies and radical transformations 
[23, 24]. Since all the latter source of improvements can be hard to distinguish it can be 
useful to lump all performance improvements that include learning or creativity in any of 
their forms under the general heading of innovation, which thus includes all sources of 
improvement except economies of scale.  An example of a measure of innovation is 
shown in Figure 7, where the efficiency of several thin-film cells is plotted as a function 
of time. Similarly in Figure 8 the carbon intensity of electricity generated via coal 
combustion is shown as a decreasing trend, primarily influenced by an increase in the 
efficiency of coal-fired power plants.  
 
Decomposition of inputs is another tool to study performance improvement. Input 
decomposition refers to a study of the physical characteristics of a given technology. For 
example we may want to characterize a technology based on its unit scale (defined as the 
investment required to produce one example of a technology) and degrees of freedom in a 
 
 
 
 
 
 
                                                                    
 
 
 
 
 
 
 
 
 

Figure 7. The change over time in laboratory cell efficiency for several thin-film 
photovoltaic cells [25].   
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Figure 8. The carbon intensity of coal electricity as a function of time. This is 
based on US data from the Energy Information Administration.  
 

device (defined as the number of modular parts that make up the whole). Input 
decomposition can also refer to dividing a technology into its parts and studying each of 
the parts separately as technologies unto themselves. For example, the inputs for a 
photovoltaic cell are the light absorbing materials, the absorber partners, the top and 
bottom contacts, barriers to the environment, circuit elements, a mounting scheme, and 
all of the processing equipment required to make each of the above [25]. Cells 
themselves are assembled into arrays and systems of arrays. Thinking in terms of input 
decomposition takes advantage of the fact that technologies are inherently recursive, i.e. 
complex technologies are often built out of other simpler technologies [26-29].   
 
By constructing performance curves for individual processes and inputs and using 
multivariate forecasting it may be possible to improve the reliability of forecasts, or at 
least gain a more accurate estimate of uncertainty. This approach allows one to ask the 
following questions: What is the relative importance of economies of scale versus 
innovation? Are performance improvements based on economies of scale more 
predictable than those based on innovation, as suggested in [11, 30]? Does improvement 
depend more on internal factors, such as unit scale (e.g. transistors vs. nuclear power 
plants), on complexity of design, or on external factors, such as level of R&D 
investment?  Studies of this kind have already begun to yield results. For example a 
recent study of photovoltaics, which uses a combination of process and input 
decomposition, suggests that the main factors contributing to the decrease in photovoltaic 
module costs were economies of scale, efficiency improvements and silicon cost [11].  
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VI.  Performance curves for renewable vs. non-renewable sources of energy  
 
In comparing performance curves for technologies based on renewable and non-
renewable resources there are several important differences to take into account. One has 
already been mentioned in the paragraphs above, namely that because of the different 
nature of cost contributions (namely one-time capital costs vs. recurring fuel costs) it is 
important to make comparisons in terms of both peak power costs and average energy 
generation cost per unit time. An additional consideration is that in the case of a non-
renewable resource the fuel costs will follow their own performance curve which will 
depend on the technology for extracting the fuel as well as price fluctuations driven by 
variations in supply and demand. The availability of a fuel is in turn influenced by the 
overall size of the resource deposits and their geographical distribution [31].  As more 
fuel is extracted the quality of fuel deposits declines, so that in absolute terms the fuel 
becomes more difficult to extract, and all else being equal fuel extraction costs will 
increase.  For non-renewable resources this resource scarcity curve competes against the 
technology improvement curve for the technologies used for resource extraction. The 
point where resource scarcity becomes dominant depends on the total size of deposits; for 
example, for coal we expect that the point at which scarcity significantly drives costs up 
is further in the future than it is for natural gas.  
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Figure 9. Cost of coal and natural gas in the U.S. in 2006$ per unit of usable 
energy extracted. These are actually prices rather than costs, i.e. they include 
profit margins, but we refer to them as ‘costs’ because they are essentially cost 
components from the point of view of  electricity generation. 
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In Figure 9 one can see that the price of coal in the United States has fluctuated 
significantly during the time period 1940-2007. This had a significant effect on the cost 
of coal-based electricity. Figure 9 also shows the cost of natural gas, which has fluctuated 
and where the cost today is several times higher than the starting costs. The fluctuations 
themselves are important because they decrease the certainty of performance curve 
extrapolations. We are currently beginning to investigate whether there are systematic 
trends in the cost of these fuels by comparing empirical data to a basic null model where 
the price of oil, natural gas, or coal follows a random walk.   
 
In summary, three factors influencing the cost of fossil fuel based energy are (1) 
technological improvement in the conversion technology driving the cost down, (2) 
technological improvement in the fuel extraction technology driving the cost down, and 
(3) progression from extraction of high quality deposits to low quality deposits driving 
the cost up. For the case of coal, the historical trend does not clearly show that we have a 
reached a point in which the cost of the fuel is trending upwards, whereas in the case of 
natural gas we may already be seeing indications of this. It is clear that for fossil fuels 
there are significant fluctuations in the cost of the resource that affect the reliability of 
performance curve projections. In the case of renewable technologies where the resource 
is essentially free, such as solar and wind, the performance curves will depend primarily 
on factor (1) above. There are several exceptions to this in cases where rare materials are 
used in manufacturing (such as the platinum group metals) and where there is a 
temporary mismatch in supply and demand (such as in the recent case of silicon based 
solar cells). However, for technologies that are dominated by installation costs, these 
effects are at least known at the time of manufacturing.  
   
VII.  Theories for Wright’s Law 
 
Wright originally postulated that technologies should improve as a power law in 
cumulative production according to equation (1).  While this hypothesis is clearly 
violated in many cases, there are nonetheless enough examples where this seems to be 
approximately true that it is interesting to ask why this particular functional form might 
be special.   
 
The literature on this question has focused on the idea that the process of innovation can 
be viewed as a search through a space of possible technologies; for reviews see [32, 33].  
Muth made an extremely simple model by simply assuming a random search, in which 
new technologies are sampled without any reference to previous technologies, and 
replace the current best technology only if their cost is lower.  Using arguments from 
extreme value theory he showed that if the space of possible technologies is reasonably 
behaved this will give rise to Wright’s Law.  However, the idea that the search is 
independent of previously known technologies is very unrealistic, and the values of the 
progress ratio that are obtained under reasonable assumptions about the search space are 
much too low to be plausible.  A more sophisticated theory was given by Auerswald et 
al., who viewed the production of a technology in terms of a recipe for its manufacture, 
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consisting of N steps.  Innovations randomly modify one of the steps in the recipe.  They 
allow for the possibility that each step in the recipe is coupled to M other steps, so that 
when one step is modified the other steps are automatically affected.  Through 
simulations they show that under certain circumstances it is possible to obtain an 
approximate power law improvement over a finite range.  One of the key assumptions is 
that M/N has the right intermediate value, i.e. M > 1 but also M/N << 1, so the 
technology is complex but not too complex. 
 
An alternative idea about how one obtains a power law is due to Sahal [34].  His 
observation is that one automatically obtains a power law from two competing 
exponentials.  If a technology proliferates exponentially in time proportional to dn/dt 
~exp(at), and its cost is drops at an exponential rate proportional to c ~ exp(-bt), then 
c(n) = kn−α , where α = b /a .  Exponential growth in cumulative numbers or exponential 
decrease in cost will occur whenever both processes can be approximated by first order 
linear differential equations, i.e. when they follow dynamics of the form dy/dt ~ y.  This 
is true even if neither process is strictly exponential providing there exists some 
coordinate transformation z that makes each of them exponential, i.e. z(c) = exp(-bt) and 
z(n) = exp(at), there will be a power law relation between c and n. Of course, this only 
complicates the story, as one must explain why the individual processes z(c) and z(n) are 
exponentials.  There are numerous comments in the literature that time trends are much 
less reliable than those based on cumulative production, which casts some doubt on this 
idea. 
 
The motivation that search is the driving force behind Wright’s Law comes from the 
observation that there are many examples of learning by doing in which there is little or 
no capital investment – where the sole source of improvement is alterations in the 
procedure for making something.  A famous example is the Horndal Iron Works [4].   
Most examples in the literature are not so simple, and involve both learning by doing and 
economies of scale.  For example, this is true for Ford motor during the era of the Model 
T:  The lowering of cost is likely partially due to more efficient manufacturing 
procedures, such as improved assembly line methods, and partially due to the fact that 
Ford sold an ever-increasing number of automobiles and so benefited from economies of 
scale in their production process. 
 
Economies of scale can also give power laws.  For example, consider the simplest case in 
which the cost for producing a single unit is the same as the cost for producing n units.  In 
this case the cost per unit for n units is c = K/n, so the relationship between cumulative 
production and cost per unit is a power law with exponent α =1, corresponding to a 
progress ratio of 50%.  This number is intriguing since it is also roughly the lower bound 
on progress ratios observed in Figure 3.  In the more general case where production of 
additional units is cheaper than the first unit, but still not free, it is not obvious why the 
cost per unit would drop as a power law rather than some other functional form.  But it is 
certainly plausible that this would happen, and in this case we would expect α <1.  In 
any case that power laws can be generated either by learning or by economies of scale. 
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Another intriguing idea is that the form of technological improvement may come about 
because of the nature of technologies themselves. Technologies have been shown to be 
recursively built out of inputs which consist of other technologies [27-29], and 
improvements in technologies typically come about via recombination of existing 
technologies.  These ideas can be extended to systems of technologies as follows: An 
ecology of related technologies can be visualized as a graph in which each technology is 
a node with directed links connecting input and output technologies.  If an input improves 
its outputs also improve. These improvements are then transmitted to other outputs, and 
so on.  If the graph has loops, the effects can cycle back to their origin, amplifying the 
original improvement.  This is analogous to the chemical phenomenon of autocatalysis.  
An example is the interaction of computers with their inputs: as computers improve, our 
ability to model semi-conductor devices improves, which improves computer 
components, which improves computers.  
 
For any fixed graph one can model the performance of a family of coupled technologies 
in terms of a set of coupled differential equations whose variables represent the 
information at the nodes and whose nonzero interaction terms represent the links. For a 
minimal model the variables at each node are the performance and prevalence of the 
technology.  As new nodes are added, representing new discoveries, the set of differential 
equations changes, which in turn may alter the pattern of addition of nodes and links.  
This approach to modeling is called metadynamics, and was originally used in studies of 
autocatalytic networks in chemistry [35-41]. In simple examples such dynamics can give 
rise to nonlinear equations with power law solutions. 
 
As already mentioned, an important determinant of the innovation component of 
technology improvement may be the ratio of unit scale to R&D investment.  The scale is 
defined as the cost of the smallest modular unit that can perform a given function. If the 
scale is small, then it is possible to make many learning steps with a given level of R&D 
investment, so progress should tend to occur more rapidly, i.e. the progress ratio may be 
smaller [42].  
 
VIII.  Technological investment viewed from the perspective of portfolio theory 
  
Technology investment choices modeled as portfolios.  The problem of investment in 
technologies can be cast in terms of a problem in dynamic portfolio allocation. The 
portfolio problem in this context is that of assigning investment weights for a group of 
competing technologies that perform a common task such as energy generation.  For 
private investment the purpose of forming a portfolio is to optimize returns under risk 
constraints, but for public investment the goal is to maximize the probability of achieving 
a socially desirable outcome such as cheap, carbon free energy. The fact that the cost of a 
given technology tends to drop as more units are produced implies that there is nonlinear 
feedback between the increasing a portfolio weight and the improving the performance of 
the technology corresponding to that weight:  The unit cost that a technology can achieve 
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depends on how much investment it receives.  The resulting nonlinear feedback 
complicates the portfolio problem and means that a bad choice at the outset can cause 
lock-in to a suboptimal technology [43].  Because of the feedback between investment 
and performance, analytic solutions are hard to find and simulation (e.g. dynamic 
programming) is necessary [44, 45].  While the classic Markowitz portfolio problem is a 
simple exercise in variational calculus [46-51], in this context it becomes a stochastic 
nonlinear dynamical system, which is a much less tractable problem.  At this point very 
little is known. 
 
The properties of the optimal portfolio depend on the accuracy of technology 
performance forecasts and involve a tradeoff between diversification and concentration.  
At one extreme, the optimal solution is to fully concentrate investment in a single 
technology.  This occurs, for example, when the parameters α i and ki  for each 
technology i are known with certainty – there is no reason not to just pick the best 
technology and invest all resources in it. The more interesting and more realistic case 
occurs when the parameters are diverse and uncertain.  In this case one needs to make a 
trade-off between diversification and concentration.  Too much diversification is bad, 
diluting individual investments so that no technologies make substantial progress.  Too 
much concentration is also bad, as it is likely to result in lock-in to a poor choice.  So far 
there has been surprisingly little work on this problem (see reference [44] for the current 
state of the art).  There is currently no qualitative theory for understanding this trade-off, 
and no quantitative simulations of real problems.  The optimal portfolio will depend 
strongly on the distribution of the parameters α  and k, their correlations across related 
technologies, and their predictability through time.   
 
What is clear is that the pressure to diversify in technology portfolios is less obvious than 
it is in the classic Markowitz portfolio theory currently used in financial markets.  In 
financial markets the differences in future returns that can be reliably forecast are small.  
This means that pressure to decrease risk will cause well-formed financial portfolios to be 
very diverse.  For technologies, in contrast, since investing tends to cause improvement, 
there is a strong countervailing pressure to concentrate rather than diversify.  A well-
formed technology portfolio strikes a balance between diversification and concentration.  
Where the correct balance lies is not clearly understood even at a qualitative level. 
 
The portfolio problem also depends on risk aversion and time discounting of utility. The 
proper functional form for time discounting is far from obvious [52].  Exponential 
discounting in time strongly weights short-term performance and amplifies lock-in. 
Behavioral studies show that people actually use hyperbolic discounting [53], which 
strictly speaking means that utility decays as a power law in time. Hyperbolic discounting 
may be caused by evolutionary selection with uncertain payoffs [54-56].  Recent work 
has shown that hyperbolic discounting can be rational when discount rates are uncertain 
[57]. Portfolio optimization over a discounting function that decays as a power law can 
give dramatically different results than for an exponential. 
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The problems of technology evolution and portfolio construction are closely related.  As 
a technology evolves, investors are implicitly solving a portfolio problem, even if they do 
so in a non-optimal manner.  Technological evolution is the outcome of a joint process in 
which public and private investors supply capital for R&D and the manufacture of new 
technologies, and managers, engineers, and workers create new technologies. Thus, we 
believe the problem of portfolio construction is intimately interwoven with that of 
technological evolution, and that it can be very useful to think about technology 
improvement from this point of view. 
 
Portfolio theory as a way to think about the effectiveness of incentives.  Portfolio 
theory can also be used to study different public policies for carbon reduction.  We 
distinguish (1) reshaping incentives (e.g. carbon taxes or cap and trade), (2) public R&D, 
and (3) other regulatory market transformation programs, such as renewable portfolio 
standards. (1) From the point of view of portfolio theory, reshaping incentives amounts to 
changing the optimization function for investment.  In the absence of incentives, cost and 
carbon generation are decoupled, and there is no reason for private investors to be 
concerned with carbon.  Incentives couple these, reshaping the optimal portfolio for 
private investors.  (2) Public R&D can directly alter a technology’s position on a 
performance curve.  Unlike portfolio optimization for a private firm, which is based on 
increasing marginal profits and tends to foster cost-benefit optimization on a short time 
scale, public R& D can be directed at achieving targeted long-range goals.  This is 
important since private firms cannot fully appropriate the benefits of R&D investments, 
and hence tend to under-invest in R&D.  (3) From the point of view of portfolio theory, 
renewable portfolio standards amount to constraining portfolio weights a priori.  Weight 
constraints are a commonly used technique in finance to improve out-of-sample 
performance [47, 51]; in the public policy setting they can also be used to enforce other 
properties of the solution, such as lowering carbon generation. 
 
IX. Conclusions  
 
In this paper we have highlighted the sizable literature on performance curves and 
discussed the remaining open questions that need to be answered in order to make 
predictions based on performance curves realize their full potential. Understanding the 
uncertainty associated with curve extrapolations is critical because of the high sensitivity 
of policy implications and investment decisions to assumptions about performance curve 
functional form and parameters. There are several methods one can adopt to improve 
forecast reliability, such as retro-casting and ensuring the long length and quality of data 
sets. We have also outlined more sophisticated methods for making forecasts such as 
process and input decomposition. 
 
Fossil fuel energy costs follow a complicated trajectory because they are influenced both 
by trends relating to resource scarcity and those relating to technology improvement.  
Technology improvement drives resource costs down, but the finite nature of deposits 
ultimately drives them up.  Based on trends from recent years it is not clear which is 
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currently dominating, e.g. Figure 5 shows how even though U.S. electricity prices have 
fluctuated, the overall trend has remained surprisingly constant for forty years, suggesting 
that technological improvement has not been sufficient to drive prices down by a 
significant amount.  During the same period costs of photovoltaics and wind decreased 
dramatically.  Extrapolations suggest that if these trends continue as they have in the past, 
the costs of reaching parity between photovoltaics and current electricity prices are on the 
order of $200 billion, which is for example comparable to less than a year of the total 
U.S. expenditure on the Iraq war.  We stress, however, that without a deeper 
understanding of what is driving trends, such forecasts remain highly uncertain. 
 
To stress the value of projections based on historical trends it is useful to consider the 
case of new technologies, where there is no historical data to extrapolate.  While 
predictions based on the past history of a technology may be uncertain, they provide an 
important extra piece of evidence.  When we consider entirely new energy technologies, 
such as carbon capture and storage, we should bear in mind that the future of such a 
technology is likely to be less certain than that of technologies with track records of 
steady improvement.  Obviously this doesn’t mean that we should not explore new 
technologies; it just means that we should bear in mind that all else being equal they have 
additional risk. 
 
In the final section we have described the unique challenges in formulating an optimal 
portfolio strategy for new energy technologies, which improve in response to increasing 
investment. A better understanding of the functional forms of performance curves, the 
underlying reasons for these curves, and the uncertainty associated with extrapolations 
will help in the determining optimal portfolio strategies for both the public and private 
sector. Investing in sensible portfolios is critical for our ability to achieve a near-zero 
carbon emissions energy infrastructure for the second half of the coming century. 
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